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Abstract 

Stroke is a key factor to impairment and is the 2nd most common reason for mortality 

worldwide. A cerebrovascular blockage, either transient or lifelong ("ischemic stroke"), causes 

infarction of the brain in the majority of instances of cerebral stroke. Our knowledge of the 

basic mechanisms of ischemia injuries and the physiological processes associated with stroke 

has advanced significantly. A plethora of signaling pathways, both harmful and 

neuroprotective, are also heavily engaged in the aforementioned pathophysiology. Improving 

blood supply to the brain and treating the cognitive impairment caused by stroke are the main 

objectives of stroke treatment. A basic knowledge of the primary molecular mechanisms 

induced by ischemic circumstances has previously been obtained through in vitro research. 

One of the most often used in vivo models for stroke research is middle cerebral artery (MCA) 

blockage, which produces repeatable cerebral infarction in the MCA area. It permits 

reperfusion by removing the occluding filament without necessitating a craniectomy. Current 

investigations on the gut microbiome have demonstrated their impact on the pathophysiology 

of ischemic stroke and the effectiveness of therapy. The term "gut dysbiosis" refers to changes 

in the diversity, abundance, and functionality of the gut microbiome. The pathogenesis of 

stroke, significant advancements in the discovery of therapy targets, and current breakthroughs 

in gut microbe-related studies on stroke are the primary concerns of this review. 
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1. INTRODUCTION 

 

An obstruction in the blood vessel can be characterized as a neurological disorder known as 

stroke. Blood clots that develop in the brain restrict arteries and cause blood vessels to rupture, 

which results in blood loss. When the blood vessels that serve the brain break apart during a 

stroke, brain cells suddenly die from an inadequate supply of oxygen. Following a stroke, 

depression and dementia may occur [1]. 

A stroke, also known as an assault on the brain, happens when a blood artery ruptures 

in the brain or when something cuts off the supply of blood to a portion of the brain. The brain 
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either perishes or suffers harm in both scenarios. One may argue that a stroke can result in 

permanent brain damage, lifelong incapacity, or even death [1]. 

Numerous studies show that stroke fatalities occur more frequently in women as 

compared to men. Typically, women account for six out of ten deaths from strokes that are 

ischemic or haemorrhagic. Numerous variables contribute to this increased risk. Among these 

is the fact that women survive longer compared to men on average and that this prolonged 

lifespan makes them more vulnerable to stroke. High blood pressure during pregnancy and 

high blood pressure brought on by some birth control medications are two additional distinct 

risk factors that are exclusive to women [2-4]. 

Usually, stroke patients suffer from two distinct types of strokes: one is ischemic, and 

the other is haemorrhagic [5][6]. In many ischemic stroke cases, the obstruction is caused by a 

blood clot that becomes stuck within any of the brain's arteries. The sole FDA-approved 

medication for treating ischemic stroke at this time is tissue plasminogen activator (tPA), a kind 

of thrombolytic that breaks down the clot. However, this medication needs to be administered 

to the stroke patient no later than 4.5 hours after the onset of symptoms [7][8]. When tPA is 

administered beyond this therapeutic window, it may cause a haemorrhagic alteration that 

aggravates pre-existing brain damage. If the clot fails to dissolve away on its own or if the 

patient does not show up at the hospital within the window required for tPA therapy, there are 

other options available, such as a thrombectomy, which involves removing the clot surgically. 

Since there is an increased chance of having another stroke soon after the first, preventative 

measures such as anticoagulants, blood pressure, and cholesterol-lowering drugs may also be 

used [6]. By using these therapies as soon as possible, the effects of any deficits that a stroke 

can lead to can be reduced [9].  

Motor problems such as hemiparesis, hemiplegia, and central facial paresis are common 

problems after a stroke [10]. Deficits in speech and language are also common; these might 

include dysarthria and global or mixed aphasia [11]. Other anomalies include reduced blood 

circulation to certain brain regions, altered consciousness, and visual problems [12]. Each of 

these deficits has a significant effect on the quality of life experienced by stroke patients. 

 

PATHOPHYSIOLOGY 

Stroke is a term used to describe a sudden neurologic episode that results from a reduction in 

the flow of the blood to the brain. Hemorrhagic stroke is brought about by bleeding or rupture 

of blood vessel, as opposed to ischemic stroke, which is brought on by insufficient blood and 

oxygen supply to the brain (Figure 2). 

Stroke victims die from ischemic occlusions in around 85% of cases; intracerebral 

bleeding causes the remaining 15% of deaths. Ischemic occlusion is the cause of brain 

embolism and thrombosis [13]. A thrombotic stroke occurs when the vascular chamber narrows 

and clots due to plaque accumulation. An embolic stroke is defined as a decrease in blood 

supply to the brain, which in turn causes severe stress and early cell death (necrosis). The 

consequences of necrosis include rupture of the membrane of the plasma cell, loss of neuronal 

function, and cellular contents seeping into the extracellular space [14–19]. 

Hemorrhagic strokes, which result in a high mortality rate, account for 10% to 15% of 

all stroke cases. Blood vessels rupture as a result of internal structural stress and harm to brain 

tissue. Infarction results from its detrimental effects on the vascular system [20]. An abnormal 

buildup of blood inside the brain is the result of blood vessels rupturing, known as Intracerebral 

hemorrhage (ICH). Hypertension, anomalies of the vasculature, overuse of anticoagulants, and 

thrombolytic drugs are the main causes of ICH. Blood can build up in the subarachnoid space 

of the brain due to brain injury or cerebral aneurysm, which can result in subarachnoid 

hemorrhage [21, 22]. 
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Figure 1: Pathophysiology of Stroke 

 

SIGNALLING PATHWAYS 

The complicated signaling pathways connected to stroke encompass numerous events that 

result in brain damage. The latest study has been centered on understanding the etiology of 

stroke that is ischemic, encompassing cellular excitotoxicity, oxidative stress, cell death 

pathways, and neural inflammation [23].  These pathways constitute an intricate signaling 

network that is intricately entwined. The following are a few signaling pathways connected to 

stroke: 

 

JAK/STAT Pathway: This pathway is involved in inflammation and immune response and 

usually has a significant part in the pathogenesis of stroke [24]. 

AMPK Pathway: It has been demonstrated that this pathway, which is involved in energy 

metabolism, contributes to the pathogenesis of stroke [24]. 

MAPK Pathway: This pathway is involved in cell proliferation, differentiation, and apoptosis 

and play a major function in the pathophysiology of stroke [24]. 

PI3K/AKT Pathway: It has been demonstrated that this pathway, which plays a vital role in 

the continued existence of cells, contributes to the pathogenesis of stroke [24]. 

Extrinsic (or Death Receptor) Pathway: This pathway is one of the principal apoptotic 

pathways triggered by stroke [23]. 

Intrinsic (or Mitochondrial) Pathway: This pathway is another principal apoptotic pathway 

triggered by stroke [23]. 

Notch Signaling Pathway: This pathway is involved in cell fate determination and play a 

function in the pathophysiology of stroke and Alzheimer's disease [25]. 

Autophagy Pathway: This pathway has been demonstrated to be implicated in the 

pathogenesis of stroke and Alzheimer's disease. It is involved in the breakdown of damaged 

organelles [25]. 

The use of therapeutic strategies against ischemic stroke that target these signaling 

pathways is conceivable [23]. To completely comprehend the intricate signaling network 
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involved in stroke, however, and to create efficient treatments and interventions to reduce brain 

damage and enhance outcomes for stroke patients, further research is required. 

 

RISK FACTORS 

Age-associated factors increase the risk of stroke in both men and women beyond the age of 

55. An individual's risk is significantly increased if they already have a medical condition such 

as hypertension, coronary artery disease, or hyperlipidemia. While many stroke risk factors are 

non-modifiable, others may be modified (Figure 2). 

 

 
Figure 2: Modifiable and non-modifiable risk factors involved in stroke 

 

1.1. Non-Modifiable Risk Factors 

These comprise age, sex, race, transient ischemic attack (TIA), and genetic traits [26]. 

According to the latest research, already existing extra risk factors enhance the incidence of 

stroke in adults between the ages of 20 and 54 [27]. Regardless of age, women are thought to 

be at equal or higher risk of stroke than males [28]. 

A transient ischemic attack, often known as a minor stroke, has the same fundamental 

mechanisms as a actual form of stroke. In TIA, part of the brain's blood circulation is briefly 

stopped. Before the actual incident, it serves as an alert, allowing patients to modify their 

lifestyle and begin taking medicine to reduce the possibility of stroke [29, 30]. 

Genetics affects both controllable and non-controllable stroke risk factors. Hereditary 

risk is influenced by age, sex, and race [31, 32], but other inherited factors can potentially 

increase the likelihood of stroke. First off, having a family history of stroke boosts a person's 

risk of developing this neurological condition. Second, as in cerebral autosomal dominant 

arteriopathy, a rare single gene mutation may play a role in a pathogenesis where the primary 

clinical manifestation is stroke. Thirdly, stroke is one of the many side consequences of several 

illnesses caused by genetic mutations, such as sickle cell anemia. Fourth, a greater risk of stroke 

has been associated with many common genetic variants, including the genetic polymorphism 

in 9p21 [33]. 

 

1.2. Modifiable Risk Factors  

Hypertension: It is among the primary contraindication for stroke. One research found that 

54% of patients with stroke had a previous diagnosis of hypertension and a blood pressure (BP) 

value of about 160/90 mmHg, either of which can be taken into account as significant risk 

factors for stroke [34, 35]. 
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Diabetes: It increases the probability of an ischemic stroke and raises death rates by 20%. 

Furthermore, after a stroke, people with diabetes had a poorer prognosis than those without the 

disease, with higher rates of severe damage and a less rapid rate of healing [36, 37]. 

Atrial fibrillation (AF): Depending on the person's age, AF increases the chance of stroke by 

anywhere between two to five times, thus becoming a significant contributor to risk. Compared 

to strokes unrelated to AF, it accounts for 15% of all strokes, is more lethal, and causes more 

severe disability [38]. 

Hyperlipidemia: Despite the convoluted nature of its relationship with stroke, it is a 

substantial contributor to coronary heart disease. While overall cholesterol raises the chance of 

stroke, high-density lipoprotein (HDL) reduces the rate of stroke [39–41]. 

Alcohol and drug abuse: There is a nonlinear association between the two variables, 

indicating that daily alcohol use raises the possibility of stroke. When consumption of alcohol 

is modest to moderate (two typical drinks each day for men and one for women), the chance of 

stroke is reduced; when input is high, the risk increases. On the other hand, even moderate 

alcohol use raises one's likelihood of stroke caused by haemorrhaging [42–44]. 

Smoking: There is a definite correlation between smoking and a higher risk of stroke. In 

comparison with non-smokers, the average smoker has a two times greater chance of stroke. 

Fifteen percent of deaths connected to stroke are caused by smoking. Research indicates that 

while prolonged contact with smoke as a passive smoker raises a person's risk of stroke by 

30%, quitting smoking decreases the danger when compared to others [45–54]. 

 

ANIMAL MODELS OF STROKE 

There are various animal models used for screening of Stroke which are listed below (depicted 

in Table 1). 

Table 1: List of Animal models of Stroke 

Stroke models Procedure Advantages 

1. The 

intraluminal 

suture MCAo 

(Middle Cerebral 

Artery 

Occlusion) 

model 

The MCAo method, which is minimally invasive, 

entails blocking the carotid artery with a suture until 

the MCA is no longer receiving blood from it.. This 

method is used to cause infarction for durations of 

60 or 90 min or forever, and it has an 88–100% 

success rate in rats and mice [55]. The Sprague-

Dawley rat, whose infarct area is not much, is the 

most often utilized animal for exploring pre-clinical 

stroke [56]. SV129 and C57BL/6 mice are 

frequently used to inflict MCA infarction [57]. 

• Mimics human 

ischemic stroke, 

• Exhibits a 

penumbra, 

• Highly 

reproducible, 

• No 

craniectomy 

2. Craniectomy 

model 

This model employs surgery to cause arterial 

occlusion. By electro-coagulating mice and 

generating a permanent injury or a microaneurysm 

that persists until the blood supply is cut off, a 

neurological deficiency can be induced using this 

method. Alternately, three-vessel obstruction is 

utilized, which reduces blood supply and causes 

tissue injury. Whether the occlusion is temporary or 

permanent affects the infarct volume [58-60]. 

• Elevated rates 

for long-lasting 

survival 

 

3. Photo-

thrombosis 

model 

The basis for this hypothesis is the photo-oxidation 

of the vasculature, which causes lesions to occur in 

the cortex and striatum. In this procedure, a 

• Renders it 

possible for an 

ischemic lesion 
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photoactive dye is used to irradiate the skull, 

resulting in endothelial damage, intraparenchymal 

vessel aggregation, and platelet activation in the 

region of injury. In rats, it is given intravenously, 

while mice receive it intraperitoneally [61]. 

to be precisely 

located 

• Highly 

reproducible, 

• Not that 

invasive 

4. Endothelin-1 

model 

Endothelin-1 (ET-1): The endothelium and smooth 

muscle cells both produce this small peptide 

molecule. It is a paracrine factor that, by way of cell-

specific receptors, limits the vascular system. An 

ischemic lesion is caused by direct stereotaxic 

injection of ET-1 into the uncovered MCA located 

within the intracerebral or cortical area. [62]. 

Following an administration of ET-1, cerebral blood 

flow was seen to decrease by 70–90% followed by 

reperfusion [63]. This procedure can be used on both 

deep and superficial layers of the brain, it is 

minimally invasive, and it has a low mortality rate. 

Reproducibility depends on the ET-1 concentration 

being adjusted to control the area of injury size [63]. 

It is suitable for long-term lesion research. 

• Not that 

invasive 

• Ischemia 

lesion 

generation in 

cortical areas 

• Death rate is 

low 

5. The embolic 

stroke model: 

It contains thromboembolic, macrosphere, and 

microsphere models. In the microsphere model, 

multifocal infarcts are created by introducing 

spheres with a diameter of 20 to 50 μm into the 

circulatory system with the help of a microcatheter 

[64]. To create reproducible lesions in the MCA, 

macrospheres of 100–400 m in diameter are injected 

into the intracerebral artery (ICA) [65]. To form 

clots in the ICA or MCA, thrombin is directly 

administered in the thromboembolic model. The size 

of the clot that forms determine the infarct's volume 

[66]. 

• Replicates the 

mechanisms 

behind stroke in 

humans 

 

 

2. GUT MICROBES AND STROKE 

2.1. Gut Microbiota 

The gastrointestinal (GI) tract of humans is home to trillions of bacteria, fungi, viruses, and 

protozoa [67, 68]. The term "gut microbiota" normally refers to the microorganisms found in 

the GI tract; when linked with their genetic materials and functional traits, this term is used to 

describe the gut microbiome [69–71]. The gut-brain axis, or GBA, is regulated by gut 

microbes, which also control neurological, metabolic, immunological, and digestive activities 

and maintain body homeostasis [72–76]. The microbes in the gut not only preserve the integrity 

of the intestinal epithelium barrier but also promote mucin and other metabolic product 

formation such as bile acids, ethanol, acetaldehyde, acetate, and other SCFAs [77]. 

Approximately 51% or 48% of gut bacteria are members of the Bacteroidetes or Firmicutes 

phyla, respectively. The term gut dysbiosis, which is often referred to as gut microbial 

dysbiosis, describes pathogenic modifications in the variety and composition of microbes in 

the gut that lead to altered states of the gut-immune and neuroimmune systems [78, 79]. The 
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disruption of GBA signaling that develops from gut dysbiosis typically contributes to higher 

intestinal barrier malfunction and local inflammation [80–82], which leads to 

pathophysiological effects [83, 84]. 

 

2.2. Gut–Brain Axis 

The central nervous system's (CNS) and gastrointestinal tract's (GI) bidirectional 

communication is termed as gut-brain axis (GBA) [69,85]. As parts of the intricate system 

known as the gut-brain axis, the enteric nervous system (ENS), gut microbes, and vagus nerve 

all interact with the GIT and the central nervous system. The ENS, commonly defined as the 

"second brain," regulates local immune responses and gastrointestinal motility through the 

myenteric and submucosal plexuses. The ENS consists of a network of neurons and glial cells 

that operate independently of the CNS. Intestinal motility, secretion, inflammation, and the 

transmission of sensory signals are all regulated by the vagus nerve. It forms a bridge between 

gastrointestinal tract (GIT) and brainstem. The GIT is inhabited by a colony of bacteria called 

the gut microbiota, which communicates with the central nervous system through 

neurotransmitters and immunological control (Fig. 3). In general, these mechanisms keep the 

gut's balance intact and communicate the state of the gut to the central nervous system [72]. 

The GI tract's sensory, motor, and secretory functions are influenced by top-to-bottom routes 

from the brain to the gut, whereas bottom-to-top signals influence cognitive and 

neurobehavioral functioning [72], [86–88]. 

 

 
Figure 3: Impact of stroke on the brain-gut axis 

 

2.3. The Gut Microbiota's Role in Stroke 

The cause of stroke is significantly influenced by the gut microbiota, as recent investigations 

have demonstrated, through its regulatory effect on immune function. Dysbiosis, or an 

inappropriate balance in the diversity of the gut microbiota, has been associated with a surge 

in oxidative stress and inflammation. These two elements play a role over initiation and severity 

of stroke. Studies on animals have shown that changes to the gut microbiota may influence 

how a stroke develops; mice that were devoid of germs showed improved neuronal activity and 
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smaller infarct sizes. Addressing dysbiosis may be a beneficial strategy for stroke treatment as 

research on stroke patients has revealed shift in the diversity of the gut microbiota [89]. 

 

2.4. Stroke's Impact on Gut Function 

The gut health may be affected by stroke in several ways. Dysphagia, or trouble engulfing, is 

a frequent side effect of stroke that can result in pneumonia and other unfavourable 

consequences [90]. Increased plasma LPS levels cause metabolic endotoxemia, which 

increases intestinal permeability [91]. A disruption of the blood-brain barrier (BBB) and 

neuroinflammation are caused by metabolic endotoxemia [79,94], which also stimulates the 

innate immune cells and causes chronic systemic inflammation [92,93]. Furthermore, post-

stroke issues like infections and malnutrition may be exacerbated by alterations in gut motility 

and the composition of the microbiota brought on by a stroke [95]. Addressing the gut-brain 

axis may present a viable treatment strategy to lower the death and disability rates linked to 

stroke because it is thought to be crucial for the pathogenesis of the condition [96]. 

 

2.5. Stroke treatment strategies addressing the gut-brain axis 

Researchers have investigated several therapeutic approaches to target gut-brain axis changes, 

including probiotics, synbiotics, fecal microbiota transplantation (FMT), and vagus nerve 

modulation. 

 

Prebiotics, Probiotics, and Synbiotics 

While probiotics are live microbes that provide health advantages when ingested in suitable 

levels, prebiotics are indigestible food substances that aid in the formation of healthy bacteria 

in the gut. Probiotics and prebiotics together form synbiotics, which support the development 

of good bacteria in the gut [97]. Probiotics comprising strains of Bifidobacterium and 

Lactobacilli have been shown in clinical research to enhance neurological performance in 

stroke patients. Similarly, synbiotics containing Bifidobacterium and oligofructose have been 

shown to improve cognitive function in stroke patients [98]. 

 

Transplantation of Faecal Microbiota 

Faeces from a healthy donor are transferred to a patient with dysbiosis in a process known as 

Faecal Microbiota Transplantation (FMT) [99]. FMT is being investigated as a potential stroke 

therapy method because it has shown effectiveness in the management of recurrent 

Clostridioides difficile infection [100]. 

 

Vagus Nerve Modulation 

The vagus nerve has found to be a possible stroke therapy, as it is an essential part of the gut-

brain axis. Past research has demonstrated that vagus nerve induction improves the outcomes 

of stroke in rats [101]. One of the novel therapeutics being studied by researchers to target the 

gut-brain axis in stroke is the use of exosomes produced from stem cells that modify the gut 

microbiota and improve effects [102]. Additional possible therapies include developing drugs 

specific to the microbiome and focusing on the metabolites of gut microbes [103]. Although 

these therapies have the potential to treat stroke-related problems, further study is required to 

discover the best strategy and window of opportunity for their application in stroke patients. 

 

 

 

 

 



ISSN NO: 2230-5807 

A Journal for New Zealand Herpetology 

BioGecko                                                                Vol 12 Issue 01 2023 

 
 

  
  1284 

3. CONCLUSION 

 

Stroke is one of the prominent reasons of mortality, leading to significant economic 

consequences, and a major global a contributing factor in impairment. It is therefore a global 

health priority to improve post-stroke treatment and offer more potent therapeutic 

interventions. Stroke technically isn't a single neurological condition; rather, it's the symptom 

of an underlying systemic issue like atherosclerosis, inflammation, or infection. These 

conditions can also create infarcts in other organs and appear as other conditions, like a heart 

attack. The analysis of specific aspects of stroke that are more or less similar to human stroke 

can be done with the use of experimental models of ischemic stroke. However, given the 

intricate pathophysiology of ischemic stroke, further thorough investigation of the involved 

signaling pathways is required. The relationship between gut dysbiosis and the pathogenesis 

and prognosis of stroke has been briefly covered in this review. 
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